
Henk: Pure Type System for Erlang

Maxim Sokhatsky

1 National Technical University of Ukraine
Igor Sikorsky Kyiv Polytechnical Institute

April 9, 2022

Abstract

This paper presents the design of the Henk language and an imple-
mentation of its type checker and bytecode extractor to Erlang. Henk is
an intermediate language based on a pure type system with the infinite
number of universes, so it is known to be consistent in dependent type
theory. This Henk language is a core part of the language family for
verification purposes. The type checker is built upon MLTT principles
and can be switched between predicative and impredicative hierarchies
of universes. This system is expected to be usable as trusted core for
certified applications which could be run inside Erlang virtual machines
LING and BEAM. The syntax is compatible with Morte language and
supports its base library, however, it extends the indexed universes. We
show how to program in this environment and link with Erlang inductive
and coinductive free structures. A very basic prelude library is shipped as
a part of the work with infinite I/O operations which immediately enables
Henk for long living runtime verified applications. We briefly describe
the top-level language which compiles to pure type system (PTS) core as
the further work. As the results, we will show lambda evaluation perfor-
mance on BEAM virtual machine. PTS approach take its roots starting
from AUTOMATH, MLTT, CoC, but extracting to performant untyped
lambda interpreters is a novel way of cerifying applications. As a full
vision we propose a stack of langauges, where Henk takes a central part.

1

Contents

1 Introduction 3
1.1 Generating Trusted Programs . 3
1.2 System Architecture . 3
1.3 Place among other languages . 4

2 Consistent PTS as Intermediate Language 4
2.1 BNF and AST . 5
2.2 Universes . 6
2.3 Predicative Universes . 6
2.4 Impredicative Universes . 6
2.5 Hierarchy Switching . 7
2.6 Contexts . 7
2.7 Single Axiom Language . 7
2.8 Type Checker . 8
2.9 Shifting . 9
2.10 Substitution . 9
2.11 Normalization . 9
2.12 Equality . 10

3 Language Usage 10
3.1 Sigma Type . 11
3.2 Equ Type . 12
3.3 Effect Type System . 12

3.3.1 Infinity I/O Type . 13
3.3.2 I/O Type . 14

4 Higher Language with Inductive Types 16
4.1 BNF . 16
4.2 AST . 17
4.3 Inductive Type Encoding . 17
4.4 Polynomial Functors . 18
4.5 List Example . 18
4.6 Base Library . 20
4.7 Measurements . 20

5 Conclusion 21

6 Acknowledgments 22

2

1 Introduction

IEEE1 standard and ESA2 regulatory documents define a number of tools and
approaches for verification and validation processes. The most advanced tech-
niques involve mathematical languages and notations. The age of verified math
was started by de Bruin’s AUTOMATH prover and Martin-Löf[14]’s type the-
ory. Today we have Coq, Agda, Lean, Idris, F* languages which are based on
Calculus of Inductive Constructions or CiC[16]. The core of CiC is Calculus
of Constructions or CoC[7]. Further development has lead to Lambda Cube[2]
and Pure Type Systems by Henk[13] and Morte3. Pure Type Systems are cus-
tom languages based on CoC with single Pi-type and possibly other extensions.
Notable extensions are ECC, ECC with Inductive Types[15], K-rules[3]. The
main motivation of Pure Type Systems is an easy reasoning about core, strong
normalization and trusted external verification due to compact type checkers. A
custom type checker can be implemented to run certified programs retrieved over
untrusted channels. The applications of such minimal cores are 1) Blockchain
smart-contract languages, 2) certified applications kernels, 3) payment process-
ing, etc.

1.1 Generating Trusted Programs

According to Curry-Howard, a correspondence inside Martin-Löf Type Theory[14]
proofs or certificates are lambda terms of particular types or specifications. As
both specifications and implementations are done in a typed language with
dependent types we can extract target implementation of a certified program
just in any programming language. These languages could be so primitive as
untyped lambda calculus and are usually implemented as untyped interpreters
(JavaScript, Erlang, PyPy, LuaJIT, K). The most advanced approach is code
generation to higher-level languages such as C++ and Rust (which is already
language with trusted features on memory, variable accessing, linear types, etc.).
In this work, we present a simple code extraction to Erlang programming lan-
guage as a target interpreter. However, we have also worked on C++ and Rust
targets as well.

1.2 System Architecture

Henk as a programming language has a core type system, the PTS∞ — the
pure type system with the infinite number of universes. This type system rep-
resents the core of the language. Higher languages form a set of front-ends to
this core. Here is example of possible languages: 1) Language for inductive
reasoning, based on CiC with extensions; 2) Homotopy Core with interval [0,1]
for proving J and funExt; 3) Stream Calculus for deep stream fusion (Futhark);

1IEEE Std 1012-2016 — V&V Software verification and validation
2ESA PSS-05-10 1-1 1995 – Guide to software verification and validation
3Gabriella Gonzalez. Haskell Morte Library

3

3) Pi-calculus for linear types, coinductive reasoning and runtime modeling (Er-
lang, Ling, Rust). These languages desugar to PTS∞ as an intermediate lan-
guage before extracting to target language4.

Not all terms from higher languages could be desugared to PTS. As was
shown by Geuvers[10] we cannot build induction principle inside PTS, we need
a fixpoint extension to PTS. And also we cannot build the J and funExt terms.
But still PTS is very powerful, it’s compatible with System F libraries. The
properties of that libraries could be proven in higher languages with Induction
and/or [0,1] Homotopy Core. Then runtime part could be refined to PTS,
extracted to target and run in an environment.

We see two levels of extensions to PTS core: 1) Inductive Types support; 2)
Homotopy Core with [0,1] and its eliminators. We will touch a bit this topic in
the last section of this document.

1.3 Place among other languages

The product is a regular Erlang/OTP application, that provides dependent
language services to the Erlang environment: 1) type checking; 2) normalization;
3) extraction. All parts of Henk compiler is written in Erlang language and
target/runtime language is Erlang.

• Level 0 — certified vectorized interpreter

• Level 1 — consistent pure type system for type checking and
normalization

• Level 2 — higher language for theorem proving and models property check-
ing

2 Consistent PTS as Intermediate Language

The Henk language is a dependently typed lambda calculus PTS∞, an exten-
sion of Coquand’ Calculus of Constructions[7] with the predicative hierarchy of
indexed universes. There is no fixpoint axiom, so there is no infinite term de-
pendence, the theory is fully consistent and has strong normalization property.

All terms respect ranking Axioms inside the sequence of universes Sorts
and complexity of the dependent term is equal to the maximum complexity of
term and its dependency Rules. The universe system is completely described
by the following PTS notation due to Barendregt[2]:

Sorts = Type.{i}, i : Nat

Axioms = Type.{i} : Type.{inc i}
Rules = Type.{i} Type.{j} : Type.{max i j}

4Note that extracting from [0,1] Homotopy Core is an open problem

4

Table 1: List of languages, tried as verification targets
Target Class Intermediate Theory
C++ compiler/native HNC System F
Rust compiler/native HNC System F
JVM interpreter/native Java F-sub5

JVM interpreter/native Scala System F-omega
GHC Core compiler/native Haskell System D
GHC Core compiler/native Morte CoC
Haskell compiler/native Coq CiC
OCaml compiler/native Coq CiC
BEAM interpreter Henk PTS∞

O interpreter Om PTS∞

K interpreter Q Applicative
PyPy interpreter/native N/A ULC
LuaJIT interpreter/native N/A ULC
JavaScript interpreter/native PureScript System F

The Henk language is based on Henk languages described first by Erik Mei-
jer and Simon Peyton Jones in 1997[13]. Later on in 2015 Morte implementation
of Henk design appeared in Haskell, using the Boem-Berrarducci encoding of
non-recursive lambda terms. It is based only on one type constructor Π, its in-
tro λ and apply eliminator, infinite number of universes, and β-reduction. The
design of Om language resemble Henk and Morte both in design and in imple-
mentation. This language intended to be small, concise, easy provable and able
to produce the verifiable piece of code that can be distributed over the networks,
compiled at the target platform with a safe linkage.

2.1 BNF and AST

Henk syntax is compatible with CoC presented in Morte and Henk languages.
However, it has extension in a part of specifying universe index as a Nat number.
Traditionally we present the language in Backus-Naur form. Equivalent AST
tree encoding from the right side.

<> : := #opt ion data pts = s t a r (n : nat)
V : := #i d e n t i f i e r | var (n : name)
S : := ∗ < #number > | app (f a : pts)
O : := S | V | (O) | lambda (x : name) (d c : pts)

| O O | O → O | pi (x : name) (d c : pts)
| λ (I : O) → O
| ∀ (I : O) → O

5

2.2 Universes

As Henk has infinite number of universes it should include metatheoretical
Nat inductive type in its core. Henk supports predicative and impredicative
hierarchies.

U0 : U1 : U2 : U3 : ...

Where U0 — propositions, U1 — sets, U2 — types and U3 — kinds, etc.

Nat
(I)

o : Nat

Typeo
(S)

You may check if a term is a universe with the star function. If an argument
is not a universe it returns {error, }.
s t a r (: s tar ,N) → N

→ (: e r ro r , ”∗”)

2.3 Predicative Universes

All terms obey the Axioms ranking inside the sequence of Sorts universes,
and the complexity Rules of the dependent term is equal to a maximum of
the term’s complexity and its dependency. Note that predicative universes are
incompatible with Church lambda term encoding. You choose either predicative
or impredicative universes with a type checker parameter.

i : Nat, j : Nat, i < j

Typei : Typej
(A1)

i : Nat, j : Nat

Typei → Typej : Typemax(i,j)
(R1)

2.4 Impredicative Universes

Propositional contractible bottom space is the only available extension to the
predicative hierarchy which doesn’t lead to inconsistency. However, there is
another option to have the infinite impredicative hierarchy.

i : Nat

Typei : Typei+1
(A2)

i : Nat, j : Nat

Typei → Typej : Typej
(R2)

6

2.5 Hierarchy Switching

Function h returns the target Universe of B term dependence on A. There are
two dependence rules known as the predicative one and the impredicative one
which returns max universe or universe of the last term respectively.

dep A B : impred i ca t i v e → B
A B : p r e d i c a t i v e → max A B

h A B → dep A B : impred i ca t i v e

2.6 Contexts

The contexts model a dictionary with variables for type checker. It can be typed
as the list of pairs or List Sigma. The elimination rule is not given here as in
our implementation the whole dictionary is destroyed after type checking.

Γ : Context
(Ctx-formation)

Γ : Context

Empty : Γ
(Ctx-intro1)

A : Typei, x : A, Γ : Context

(x : A) ` Γ : Context
(Ctx-intro2)

2.7 Single Axiom Language

This language is called one axiom language (or pure) as eliminator and introduc-
tion rules inferred from type formation rule. The only computation rule of Pi
type is called beta-reduction. Computational rules of language are called opera-
tional semantics and establish equality of substitution and lambda application.
Operational semantics in that way defines the rewrite rules of computations.

x : A ` B : Type

Π (x : A)→ B : Type
(Π-formation)

x : A ` b : B

λ (x : A)→ b : Π (x : A)→ B
(λ-intro)

f : (Π (x : A)→ B) a : A

f a : B [a/x]
(App-elimination)

x : A ` b : B a : A

(λ (x : A)→ b) a = b [a/x] : B [a/x]
(β-computation)

π1 : A u : A ` π2 : B

[π1/u] π2 : B
(subst)

The theorems (specification) of PTS could be embedded in itself and used as
Logical Framework for the Pi type. Here is the example in the higher language.

7

record Pi (A: Type) :=
(i n t r o : (A → Type) → Type)
(lambda : (B: A → Type) → pi A B → i n t r o B)
(app : (B: A → Type) → i n t r o B → pi A B)
(applam : (B: A → Type) (f : p i A B) → (a : A) →

Path (B a) ((app B (lambda B f)) a) (f a))
(lamapp : (B: A → Type) (p : i n t r o B) →

Path (i n t r o B) (lambda B (λ (a :A) → app B p a)) p)

The proofs intentionally left blank, as it proofs could be taken from various
sources [2]. The equalities of computational semantics presented here as Path
types in the higher language.

The Henk language is the extention of the PTS∞ with the remote AST
node which means remote file loading from trusted storage, anyway this will be
checked by the type checker. We deny recursion over the remote node. We also
add an index to var for simplified de Bruijn indexes, we allow overlapped names
with tags, incremented on each new occurrence.

data om = s t a r (n : nat)
| var (n : name) (n : nat)
| remote (n : name) (n : nat)
| pi (x : name) (n : nat) (d c : om)
| fn (x : name) (n : nat) (d c : om)
| app (f a : om)

Our typechecker differs from cannonical example of Coquand[6]. We based
our typechecker on variable Substitution, variable Shifting, term Normal-
ization, definitional Equality anf Type Checker itself.

2.8 Type Checker

For sure in a pure system, we should be careful with :remote AST node. Re-
mote AST nodes like #List/Cons or #List/map are remote links to files.
So using trick one should desire circular dependency over :remote.

type (: s tar ,N) D → (: s tar ,N+1)
(: var ,N, I) D → : t rue = p r o p l i s t s : i s d e f i n e d N B, om: keyget N D I
(: remote ,N) D → om: cache (type N D)
(: pi ,N, 0 , I ,O) D → (: s tar , h (s t a r (type I D)) , s t a r (type O [(N, norm I) |D]))
(: fn ,N, 0 , I ,O) D → l e t s t a r (type I D) , NI = norm I

in (: pi ,N, 0 , NI , type (O, [(N, NI) |D]))
(: app , F ,A) D → l e t T = type (F ,D) ,

(: pi ,N, 0 , I ,O) = T, : t rue = eq I (type A D)
in norm (subst O N A)

8

2.9 Shifting

Shift renames var N in B. Renaming means adding 1 to the nat component of
variable.

sh (: s tar ,X) N P → (: s tar ,X)
(: var ,N, I) N P → (: var ,N, I +1) when I >= P

→ (: var ,N, I)
(: remote ,X) N P → (: remote ,X)
(: pi ,N, 0 , I ,O) N P → (: pi ,N, 0 , sh I N P, sh O N P+1)
(: fn ,N, 0 , I ,O) N P → (: fn ,N, 0 , sh I N P, sh O N P+1)
(: app , L ,R) N P → (: app , L ,R)

2.10 Substitution

Substitution replaces variable occurance in terms.

sub (: s tar ,X) N V L → (: s tar ,X)
(: var ,N, L) N V L → V
(: var ,N, I) N V L → (: var ,N, I −1) when I > L
(: remote ,X) N V L → (: remote ,X)
(: pi ,N, 0 , I ,O) N V L → (: pi ,N, 0 , sub I N V L , sub O N (sh V N 0) L+1)
(: pi , F ,X, I ,O) N V L → (: pi , F ,X, sub I N V L , sub O N (sh V F 0) L)
(: fn ,N, 0 , I ,O) N V L → (: fn ,N, 0 , sub I N V L , sub O N (sh V N 0) L+1)
(: fn , F ,X, I ,O) N V L → (: fn , F ,X, sub I N V L , sub O N (sh V F 0) L)
(: app , F ,A) N V L → (: app , sub F N V L , sub A N V L)

2.11 Normalization

Normalization performs substitutions on applications to functions (beta-reduction)
by recursive entrance over the lambda and pi nodes.

norm (: s tar ,X) → (: s tar ,X)
(: var ,X) → (: var ,X)
(: remote ,N) → cache (norm N [])
(: pi ,N, 0 , I ,O) → (: pi ,N, 0 , norm I , norm O)
(: fn ,N, 0 , I ,O) → (: fn ,N, 0 , norm I , norm O)
(: app , F ,A) → case norm F of

(: fn ,N, 0 , I ,O) → norm (subst O N A)
NF → (: app ,NF, norm A) end

9

2.12 Equality

Definitional Equality simply checks the equality of Erlang terms.

eq (: s tar ,N) (: s tar ,N) → t rue
(: var ,N, I) (: var , (N, I)) → t rue
(: remote ,N) (: remote ,N) → t rue
(: pi , N1 , 0 , I1 ,O1) (: pi , N2 , 0 , I2 ,O2) →

l e t : t rue = eq I1 I2
in eq O1 (subst (s h i f t O2 N1 0) N2 (: var , N1 , 0) 0)

(: fn , N1 , 0 , I1 ,O1) (: fn , N2 , 0 , I2 ,O2) →
l e t : t rue = eq I1 I2
in eq O1 (subst (s h i f t O2 N1 0) N2 (: var , N1 , 0) 0)

(: app , F1 , A1) (: app , F2 , A2) → l e t : t rue = eq F1 F2 in eq A1 A2
(A,B) → (: e r ro r , (: eq ,A,B))

3 Language Usage

Here we will show some examples of Henk language usage. In this section,
we will show two examples. One is lifting PTS system to MLTT system by
defining Sigma and Equ types using only Pi type. We will use Bohm inductive
dependent encoding[4]. The second is to show how to write real world programs
in Henk that performs input/output operations within Erlang environment.
We show both recursive (finite, routine) and corecursive (infinite, coroutine,
process) effects.

$. /om help me
[{ a , [expr] , ” to parse . Returns { , } or { e r ror , } . ”} ,
{ type , [term] , ” typechecks and re tu rn s type . ”} ,
{ erase , [term] , ” to untyped term . Returns { , } . ”} ,
{norm , [term] , ” normal ize term . Returns term ’ s normal form . ”} ,
{ f i l e , [name] , ” load f i l e as binary . ”} ,
{ s t r , [b inary] , ” l e x i c a l t o k e n i z e r . ”} ,
{parse , [tokens] , ” parse g iven tokens in to { , } term . ”} ,
{ f s t , [{ x , y }] , ” r e tu rn s f i r s t element o f a pa i r . ”} ,
{snd , [{ x , y }] , ” r e tu rn s second element o f a pa i r . ”} ,
{debug , [bool] , ” enable / d i s a b l e debug output . ”} ,
{mode , [name] , ” s e l e c t metaverse f o l d e r . ”} ,
{modes , [] , ” l i s t a l l metaverses . ” }]

$. /om p r in t f s t e r a s e norm a ”#L i s t /Cons”
\ Head

−> \ Tai l
−> \ Cons
−> \ Ni l
−> Cons Head (Ta i l Cons Ni l)
ok

10

3.1 Sigma Type

The PTS system is extremely powerful even without Sigma type. But we can
encode Sigma type similar how we encode Prod tuple pair in Bohm encoding.
Let’s formulate Sigma type as an inductive type in higher language.

data Sigma (A: Type) (P: A −> Type) (x : A) : Type =
(i n t r o : P x −> Sigma A P)

The Sigma-type with its eliminators appears as example in Aaron Stump
[17]. Here we will show desugaring to PTS∞.

−− Sigma/@
\ (A: ∗)

−> \ (P: A −> ∗)
−> \ (n : A)
−> \/ (Ex i s t s : ∗)
−> \/ (In t ro : A −> P n −> Ex i s t s)
−> Ex i s t s

−− Sigma/ In t ro
\ (A: ∗)

−> \ (P: A −> ∗)
−> \ (x : A)
−> \ (y : P x)
−> \ (Ex i s t s : ∗)
−> \ (In t ro : \/ (x :A) −> P x −> Ex i s t s)
−> In t ro x y

−− Sigma/ f s t
\ (A: ∗)

−> \ (B: A −> ∗)
−> \ (n : A)
−> \ (S : #Sigma/@ A B n)
−> S A (\(x : A) −> \(y : B n) −> x)

−− Sigma/snd
\ (A: ∗)

−> \ (B: A −> ∗)
−> \ (n : A)
−> \ (S : #Sigma/@ A B n)
−> S (B n) (\(: A) −> \(y : B n) −> y)

> om: f s t (om: e ra s e (om: norm(om: a(”#Sigma/ t e s t . f s t ”)))) .
{{λ ,{ ’ Succ ’ , 0}} ,
{any ,{{λ ,{ ’ Zero ’ , 0}} ,{ any ,{ var ,{ ’ Zero ’ ,0}}}}}}

For using Sigma type for Logic purposes one should change the home Uni-
verse of the type to Prop. Here it is:

data Sigma (A: Prop) (P: A −> Prop) : Prop =
(i n t r o : (x :A) (y :P x) −> Sigma A P)

11

3.2 Equ Type

Another example of expressiveness is Equality type a la Martin-Löf.

data Equ (A: Type) : A −> A −> Type :=
(r e f l (a : A) : Equ A a a)

−− Equ/@
\ (A: ∗)

−> \ (x : A)
−> \ (y : A)
−> \/ (Equ : A −> A −> ∗)
−> \/ (Re f l : \/ (z : A) −> Equ z z)
−> Equ x y

−− Equ/ Re f l
\ (A: ∗)

−> \ (x : A)
−> \ (Equ : A −> A −> ∗)
−> \ (Re f l : \/ (z : A) −> Equ z z)
−> Ref l x

You cannot construct a lambda that will check different values of A type is
they are equal, however, you may want to use built-in definitional equality and
normalization feature of type checker to actually compare two values:

> om: p r i n t (om: type (
om: a (”(\\ (z : #Equ/@ #Nat/@ #Nat/One #Nat/One) −> #Prop/True)”++

” (#Equ/ Ref l #Nat/@ (#Nat/Succ #Nat/ Zero)) ”))) .
\/ (True : ∗0)

−> \/ (In t ro : True)
−> True
ok

> om: p r i n t (om: type (
om: a (”(\\ (z : #Equ/@ #Nat/@ #Nat/One #Nat/One) −> #Prop/True)”++

” (#Equ/ Re f l #Nat/@ #Nat/ Zero) ”))) .
∗∗ except ion e r r o r : no match o f r i g h t hand s i d e value

{ e r ror ,{”==”,
{app ,{{ var ,{ ’ Succ ’ , 0}} ,{ var ,{ ’ Zero ’ , 0}}}} ,
{var ,{ ’ Zero ’ , 0}}}}

3.3 Effect Type System

This work is expected to compile to a limited number of target platforms. For
now, Erlang, Haskell, and LLVM are awaiting. Erlang version is expected to
be used both on LING and BEAM Erlang virtual machines. This language
allows you to define trusted operations in System F and extract this routine to
Erlang/OTP platform and plug as trusted resources. As the example, we also

12

provide infinite coinductive process creation and inductive shell that linked to
Erlang/OTP IO functions directly.

IO protocol. We can construct in pure type system the state machine based
on (co)free monads driven by IO/IOI protocols. Assume that String is a
List Nat (as it is in Erlang natively), and three external constructors: getLine,
putLine and pure. We need to put correspondent implementations on host
platform as parameters to perform the actual IO.

St r ing : Type = L i s t Nat
data IO : Type =

(getLine : (S t r ing −> IO) −> IO)
(putLine : S t r ing −> IO)
(pure : () −> IO)

3.3.1 Infinity I/O Type

Infinity I/O Type Spec.

−− IOI/@: (r : U) [x : U] [[s : U] −> s −> [s −> #IOI/F r s] −> x] x
\ (r : ∗)

−> \/ (x : ∗)
−> (\/ (s : ∗)

−> s
−> (s −> #IOI/F r s)
−> x)

−> x

−− IOI/F
\ (a : ∗)

−> \ (State : ∗)
−> \/ (IOF : ∗)
−> \/ (PutLine : #IOI/ data −> State −> IOF)
−> \/ (GetLine : (#IOI/ data −> State) −> IOF)
−> \/ (Pure : a −> IOF)
−> IOF

−− IOI/MkIO
\ (r : ∗)

−> \ (s : ∗)
−> \ (seed : s)
−> \ (s tep : s −> #IOI/F r s)
−> \ (x : ∗)
−> \ (k : f o r a l l (s : ∗) −> s −> (s −> #IOI/F r s) −> x)
−> k s seed step

−− IOI/ data
#L i s t /@ #Nat/@

Infinite I/O Sample Program.

13

−− Morte/ c o r e c u r s i v e
(\ (r : ∗1)
−> ((((# IOI/MkIO r) (#Maybe/@ #IOI/ data)) (#Maybe/Nothing #IOI/ data))

(\ (m: (#Maybe/@ #IOI/ data))
−> (((((#Maybe/maybe #IOI/ data) m) ((#IOI/F r) (#Maybe/@ #IOI/ data)))

(\ (s t r : #IOI/ data)
−> ((((# IOI/ putLine r) (#Maybe/@ #IOI/ data)) s t r)

(#Maybe/Nothing #IOI/ data))))
(((# IOI/ getLine r) (#Maybe/@ #IOI/ data))
(#Maybe/ Just #IOI/ data))))))

Erlang Coinductive Bindings.

copure () −>
fun () −> fun (IO) −> IO end end .

cogetL ine () −>
fun (IO) −> fun () −>

L = ch : l i s t (i o : g e t l i n e (”> ”)) ,
ch : ap (IO , [L]) end end .

coputLine () −>
fun (S) −> fun (IO) −>

X = ch : u n l i s t (S) ,
i o : put chars (” : ”++X) ,
case X o f ”0\n” −> l i s t ([]) ;

−> corec () end end end .

co rec () −>
ap (’ Morte ’ : c o r e c u r s i v e () ,

[copure () , cogetL ine () , coputLine () , copure () , l i s t ([])]) .

> om extract : e x t r a c t (” pr iv /normal/ IOI ”) .
ok
> Active : module loaded : { re loaded , ’ IOI ’}

> om: corec () .
> 1
: 1
> 0
: 0

#Fun<L i s t .3.113171260>

3.3.2 I/O Type

I/O Type Spec.

−− IO/@
\ (a : ∗)

−> \/ (IO : ∗)

14

−> \/ (GetLine : (#IO/ data −> IO) −> IO)
−> \/ (PutLine : #IO/ data −> IO −> IO)
−> \/ (Pure : a −> IO)
−> IO

−− IO/ rep l i cateM
\ (n : #Nat/@)

−> \ (i o : #IO/@ #Unit/@)
−> #Nat/ f o l d n (#IO/@ #Unit/@)

(#IO/[>>] i o)
(#IO/ pure #Unit/@ #Unit/Make)

Guarded Recursion I/O Sample Program.

−− Morte/ r e c u r s i v e
((#IO/ rep l i cateM #Nat/ Five)

((((#IO/[>>=] #IO/ data) #Unit/@) #IO/ getLine) #IO/ putLine))

Erlang Inductive Bindings.

pure () −>
fun (IO) −> IO end .

getL ine () −>
fun (IO) −> fun () −>

L = ch : l i s t (i o : g e t l i n e (”> ”)) ,
ch : ap (IO , [L]) end end .

putLine () −>
fun (S) −> fun (IO) −>

i o : put chars (” : ”++ch : u n l i s t (S)) ,
ch : ap (IO , [S]) end end .

r ec () −>
ap (’ Morte ’ : r e c u r s i v e () ,

[getL ine () , putLine () , pure () , l i s t ([])]) .

Here is example of Erlang/OTP shell running recursive example.

> om: rec () .
> 1
: 1
> 2
: 2
> 3
: 3
> 4
: 4
> 5
: 5

#Fun<L i s t .28.113171260>

15

4 Higher Language with Inductive Types

As was shown by Herman Geuvers[10] the induction principle is not derivable
in second-order dependent type theory. However there a lot of ways doing
this. For example, we can build in induction principal into the core for every
defined inductive type. We even can allow recursive type check for only terms of
induction principle, which have recursion base — that approach was successfully
established by Peng Fu and Aaron Stump[17]. In any case for derivable induction
principle in PTS∞ we need to have fixpoint somehow in the core.

So-called Calculus of Inductive Constructions[16] is used as a top language
on top of PTS to reason about inductive types. Here we will show you a sketch
of such inductive language model which intended to be a language extension to
PTS system. CiC is allowing fixpoint for any terms, and base checking should
be performed during type checking such terms.

Our future top language is a general-purpose functional language with Π
and Σ types, recursive algebraic types, higher order functions, corecursion, and
a free monad to encode effects. It compiles to a small MLTT core of dependent
type system with inductive types and equality. It also has an Id-type (with its
recursor) for equality reasoning, Case analysis over inductive types.

4.1 BNF

<> : := #opt ion
[] : := #l i s t
| : := #sum
1 : := #uni t
I : := #i d e n t i f i e r
U : := Type < #nat >
T : := 1 | (I : O) T
F : := 1 | I : O = O , F
B : := 1 | [| I [I] → O]
O : := I | (O) |

U | O → O | O O
| fun (I : O) → O | f s t O
| snd O | id O O O
| J O O O O O | l e t F in O
| (I : O) ∗ O | (I : O) → O
| data I T : O := T | record I T : O := T
| case O B

16

4.2 AST

The AST of higher language is formally defined using itself. Here you can find
telescopes (context lists), split and its branches, inductive data definitions.

data t e l e (A: U) = emp | t e l (n : name) (b : A) (t : t e l e A)
data branch (A: U) = br (n : name) (args : l i s t name) (term : A)
data l a b e l (A: U) = lab (n : name) (t : t e l e A)
data ind

= s t a r (n : nat)
| var (n : name) (i : nat)
| app (f a : ind)
| lambda (x : name) (d c : ind)
| pi (x : name) (d c : ind)
| sigma (n : name) (a b : ind)
| arrow (d c : ind)
| pa i r (a b : ind)
| f s t (p : ind)
| snd (p : ind)
| id (a b : ind)
| i d p a i r (a b : ind)
| i d e l im (a b c d e : ind)
| data (n : name) (t : t e l e ind) (l a b e l s : l i s t (l a b e l ind))
| case (n : name) (t : ind) (branches : l i s t (branch ind))
| c to r (n : name) (args : l i s t ind)

The Erlang version of parser encoded with OTP library yecc which im-
plements LALR-1 grammar generator. This version resembles the model and
slightly based on cubical type checker by Mortberg[5] and could be reached at
Github repository6.

4.3 Inductive Type Encoding

There are a number of inductive type encodings: 1) Commutative square encod-
ing of F-algebras by Hinze, Wu [12]; 2) Inductive-recursive encoding, algebraic
type of algebraic types, inductive family encoding by Dagand [8]; 3) Encod-
ing with motives inductive-inductive definition, also with inductive families, for
modeling quotient types by Altenkirch, Kaposi [1]; 4) Henry Ford encoding or
encoding with Ran,Lan-extensions by Hamana, Fiore [11]; 5) Church-compatible
Bohm-Berarducci encoding Bohm, Berarducci [4]. Om is shipped with base li-
brary in Church encoding and we already gave the example of IO system encoded
with runtime linkage. We give here simple calculations behind this theory.

6http://github.com/groupoid/infinity/tree/master/priv

17

4.4 Polynomial Functors

Least fixed point trees are called well-founded trees. They encode polynomial
functors.

Natural Numbers: µ X → 1 +X
List A: µ X → 1 +A×X
Lambda calculus: µ X → 1 +X ×X +X
Stream: ν X → A×X
Potentialy Infinite List A: ν X → 1 +A×X
Finite Tree: µ X → µ Y → 1 +X × Y = µ X = List X

As we know there are several ways to appear for a variable in a recursive
algebraic type. Least fixpoint is known as a recursive expression that has a
base of recursion In Chuch-Bohm-Berarducci encoding type are store as non-
recursive definitions of their right folds. A fold in this encoding is equal to id
function as the type signature contains its type constructor as parameters to a
pure function.

4.5 List Example

The data type of lists over a given set A can be represented as the initial algebra
(µLA, in) of the functor LA(X) = 1 + (A ×X). Denote µLA = List(A). The
constructor functions nil : 1 → List(A) and cons : A× List(A) → List(A) are
defined by nil = in ◦ inl and cons = in ◦ inr, so in = [nil, cons]. Given any
two functions c : 1 → C and h : A × C → C, the catamorphism f = L[c, h]M :
List(A)→ C is the unique solution of the simultaneous equations:{

f ◦ nil = c

f ◦ cons = h ◦ (id× f)

where f = foldr(c, h). Having this the initial algebra is presented with
functor µ(1+A×X) and morphisms sum [1→ List(A), A×List(A)→ List(A)]
as catamorphism. Using this encoding the base library of List will have following
form:


list = λ ctor → λ cons→ λ nil→ ctor

cons = λ x → λ xs→ λ list→ λ cons→ λ nil→ cons x (xs list cons nil)

nil = λ list→ λ cons→ λ nil→ nil

Here traditionally we show the List definition in higher language and its
desugared version in Henk language.

data L i s t : (A: ∗) → ∗ :=
(Cons : A → l i s t A → l i s t A)
(Ni l : l i s t A)

18

−− L i s t /@
\ (A : ∗)

−> \/ (L i s t : ∗)
−> \/ (Cons : \/ (Head : A) −> \/ (Ta i l : L i s t) −> L i s t)
−> \/ (Ni l : L i s t)
−> L i s t

−− L i s t /Cons
\ (A: ∗)

−> \ (Head : A)
−> \ (Ta i l :

\/ (L i s t : ∗)
−> \/ (Cons : \/ (Head : A) −> \/ (Ta i l : L i s t) −> L i s t)
−> \/ (Ni l : L i s t)
−> L i s t)

−> \ (L i s t : ∗)
−> \ (Cons :

\/ (Head : A)
−> \/ (Ta i l : L i s t)
−> L i s t)

−> \ (Ni l : L i s t)
−> Cons Head (Ta i l L i s t Cons Ni l)

−− L i s t / Ni l
\ (A: ∗)

−> \ (L i s t : ∗)
−> \ (Cons :

\/ (Head : A)
−> \/ (Ta i l : L i s t)
−> L i s t)

−> \ (Ni l : L i s t)
−> Ni l

record l i s t s : (A B: ∗) :=
(l en : l i s t A → i n t e g e r)
((++): l i s t A → l i s t A → l i s t A)
(map : (A → B) → (l i s t A → l i s t B))
(f i l t e r : (A → bool) → (l i s t A → l i s t A))


foldr = L[f ◦ nil, h]M, f ◦ cons = h ◦ (id× f)

len = L[zero, λ a n→ succ n]M
(++) = λ xs ys→ L[λ(x)→ ys, cons]M(xs)
map = λ f → L[nil, cons ◦ (f × id)]M

19



len = foldr (λ x n→ succ n) 0

(++) = λ ys→ foldr cons ys

map = λ f → foldr (λx xs→ cons (f x) xs) nil

filter = λ p→ foldr (λx xs→ if p x then cons x xs else xs) nil

foldl = λ f v xs = foldr (λ xg → (λ→ g (f a x))) id xs v

4.6 Base Library

The base library includes basic type-theoretical building blocks starting from
Unit, Bool, Either, Maybe, Nat, List and IO. Here some examples how it
looks like. The full listing of Base Library folder is available at Henk GitHub
repository7.

data Nat : Type :=
(Zero : Unit → Nat)
(Succ : Nat → Nat)

data L i s t (A: Type) : Type :=
(Ni l : Unit → L i s t A)
(Cons : A → L i s t A → L i s t A)

record St r ing : L i s t Nat := L i s t . N i l

data IO : Type :=
(getLine : (S t r ing → IO) → IO)
(putLint : S t r ing → IO)
(pure : () → IO)

record IO : Type :=
(data : S t r ing)
([>>=]: . . .)

r ecord Morte : Type :=
(r e c u r s i v e : IO . rep l i cateM

Nat . Five (IO.[>>=] IO . data Unit
IO . getL ine IO . putLine))

4.7 Measurements

The underlying Henk type checker and compiler is a target language for higher
level languages. The overall size of Henk language with extractor to Erlang is
265 lines of code.

7http://github.com/groupoid/om

20

Table 2: Compiler Passes
Module LOC Description
om tok 54 LOC Handcoded Tokenizer
om parse 81 LOC Inductive AST Parser
om type 60 LOC Term normalization and typechecking
om erase 36 LOC Delete information about types
om extract 34 LOC Extract Erlang Code

5 Conclusion

We have proposed a modified version of CoC, also known as pure type system,
with predicative and impredicative switchable infinitary hierarchies. This sys-
tem is known to be consistent, supports strong normalization and resembles
the type system which is the same as foundations of modern provers, like Coq,
Lean, Agda.

Discoveries. During this investigation were made following discoveries: 1)
baning recursion caused impossibility of encoding a class of theorems based on
induction principle. As was shown by Peng Fu, Aaron Stump[9], the only needed
ingredient for induction in CoC is Self-Type, weak form of fixpoint recursion in
the core. 2) however for running applications at runtime it is enough System F
programs or Dependent Types without Fixpoint. So we can prove properties of
these programs in higher languages with fixpoint (and thus induction) and then
erase theorems from a specification and convert runtime parts of the specification
into PTS∞ with later extraction to any functional language. 2) there are a lot
of theorems, that could be expressed without fixpoint, such as theorems from
higher order logic. 3) this system could be naturally translated into untyped
lambda interpreters.

Advantages over existing pure languages. 1) refined version of type
checker and the clean implementation in 265 LOC. This will make more trust
to the core by external institutions. 2) supporting both predicative and impred-
icative hierarchies of PTS∞ configuration. 3) comparing to other languages,
Om is much faster on big terms thanks to fast Erlang lambda evaluations and
a cache layer. 4) Om is a production language.

Scientific and Production usage. 1) The language could be used as a
trusted core for certification sensitive parts of applications, such as in finance,
math or other domains with the requirement for totality. 2) This work could
be used as embeddable runtime library. 3) In the academia PTS∞ could be
used as teaching instrument for logic, type systems, lambda calculus, functional
languages.

Further research perspective. 1) Extend the host languages from Er-
lang to Rust and prove the Om within Coq or Cubical. 2) Build a theory of
compilation and erasing from higher languages to PTS∞. 3) Build a certified
interpreter (replace Erlang) in future higher level language. 4) Make Induction

21

Principle switchable with PTS∞ in future.

6 Acknowledgments

We thank all contributors of Groupoid Infinity who helped us to avoid mistakes
in TeX and Erlang files. We also thank our spouses for continuous support.

References

[1] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory
using quotient inductive types. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’16, pages 18–29, New York, NY, USA, 2016. ACM.

[2] H. P. Barendregt. In S. Abramsky, Dov M. Gabbay, and S. E. Maibaum,
editors, Handbook of Logic in Computer Science (Vol. 2), pages 117–309,
New York, NY, USA, 1992. Oxford University Press, Inc.

[3] Gilles Barthe. Extensions of pure type systems, pages 16–31. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1995.

[4] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed
lambda-programs on term algebras. In Theoretical Computer Science, vol-
ume 39, pages 135–154, 1985.

[5] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. In
Cubical Type Theory: a constructive interpretation of the univalence axiom,
volume abs/1611.02108, 2017.

[6] Thierry Coquand. An algorithm for type-checking dependent types. In Sci.
Comput. Program., volume 26, pages 167–177, 1996.

[7] Thierry Coquand and Gerard Huet. The calculus of constructions. In
Information and Computation, pages 95–120, Duluth, MN, USA, 1988.
Academic Press, Inc.

[8] P.É. Dagand, University of Strathclyde. Department of Computer, and
PhD thesis Information Sciences. A Cosmology of Datatypes: Reusability
and Dependent Types. 2013.

[9] Peng Fu and Aaron Stump. Self types for dependently typed lambda en-
codings. In Rewriting and Typed Lambda Calculi - Joint International Con-
ference, RTA-TLCA 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, pages 224–239,
2014.

22

[10] Herman Geuvers. Induction Is Not Derivable in Second Order Dependent
Type Theory, pages 166–181. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2001.

[11] Makoto Hamana and Marcelo P. Fiore. A foundation for gadts and induc-
tive families: dependent polynomial functor approach. In Proceedings of the
seventh ACM SIGPLAN workshop on Generic programming, WGP@ICFP
2011, Tokyo, Japan, September 19-21, 2011, pages 59–70, 2011.

[12] Ralf Hinze and Nicolas Wu. Histo- and dynamorphisms revisited. In Pro-
ceedings of the 9th ACM SIGPLAN Workshop on Generic Programming,
WGP ’13, pages 1–12, New York, NY, USA, 2013. ACM.

[13] Simon Peyton Jones and Erik Meijer. Henk: A typed intermediate lan-
guage. In In Proc. First Int’l Workshop on Types in Compilation, 1997.

[14] P. Martin-Löf and G. Sambin. Intuitionistic type theory. Studies in proof
theory. Bibliopolis, 1984.

[15] Christian-Emil Ore. The extended calculus of constructions (ecc) with
inductive types. In Information and Computation, volume 99, pages 231 –
264, 1992.

[16] Christine Paulin-Mohring. Introduction to the Calculus of Inductive Con-
structions. In Bruno Woltzenlogel Paleo and David Delahaye, editors, All
about Proofs, Proofs for All, volume 55 of Studies in Logic (Mathematical
logic and foundations). College Publications, January 2015.

[17] Aaron Stump. The calculus of dependent lambda eliminations. In Journal
of Functional Programming, volume 27. Cambridge University Press, 2017.

23

